
Microservices and DevOps

Scalable Microservices
Stability Patterns

Henrik Bærbak Christensen

Anti --- Antipatterns

• Nygaard lists 14 antipatterns

– Users, blocked threads, slow response, chain reactions, etc.

• So – how to combat these???

– The Stability Patterns

– (and the ‘Remember this’ section in each antipattern chapter,

which mentions stability patterns that are not mentioned in this

chapter, hmmm)

CS@AU Henrik Bærbak Christensen 2

Summary

• Note: Figure from

first edition!

• Missing in 2nd Ed,

and a bit different

pattern set

• But – nevertheless…

CS@AU Henrik Bærbak Christensen 3

Is All This Clutter Necessary?

• As stated by Nygard:

• … handling all the possible timeouts creates undue

complexity in your code. It certainly adds complexity.

• … Your users may not thank you for it, because nobody

notices when a system doesn’t go down, but you will

sleep better at night.

CS@AU Henrik Bærbak Christensen 4

Timeouts

• Timeouts: Guard any call to remote units with timeout to

avoid waiting forever on an answer that never arrives

– Well placed time-outs provide fault isolation: your code does not

break due to a failure in another subsystem.

– Beware of vender supplied APIs, sometimes they have forgotten

to add time out parameters 

• Or it is in the API, but not implemented   

CS@AU Henrik Bærbak Christensen 5

Timeouts

• Timeouts: Guard any call to remote units with timeout to

avoid waiting forever on an answer that never arrives

– Apply to Integration Points, Blocked Threads, and Slow

Reponses

– Consider delayed retries

• Network issues take time to go away – do not retry again

immediately

– See ‘Retry’ pattern (that I introduce) later…

CS@AU Henrik Bærbak Christensen 6

Timeouts on Locks

• Java supports running multiple threads

– To avoid ‘weird stuff’ you need to guard ‘critical regions’

• i.e. the method that two or more threads may call at the same time

• Classic Java

– Synchronized methods cannot time out!

• Modern Java

– ReentrantLock myLock;

• Acquire not by ‘myLock.lock()’ but…

• By ‘myLock.tryLock(3, TimeUnit.SECONDS)’

CS@AU Henrik Bærbak Christensen 7

Circuit Breaker

• The idea of a fuse: Burn before your house does!

• Circuit breaker: Da: Maksimalafbryder

– … en automatisk afbryder, som bruges til udkobling af

overstrømme.

– Består af bryderdel og relædel.

Relædelens funktion er at måle strømmen

og i tilfælde af en overstrøm udkoble af-

bryderen

– HFI relæ

CS@AU Henrik Bærbak Christensen 8

Circuit Breaker

• Circuit Breaker: Wrap dangerous operations with a

component that can circumvent calls when the system is

not healthy. Differs from retries, in that circuit breakers

exist to prevent operations rather than to re-execute

them.

CS@AU Henrik Bærbak Christensen 9

Circuit Breaker

• Closed state:

– Execute operation as normal

• If operation fails (timeout) then

– Note it (increment failure count)

– If failure count > threshold then Open

• Open state:

– Fail fast, avoid the wait for timeout

– After a set time, switch to Half-open

• Half-open state:

– Execute operation again

• if fail then goto Open state immediately

• if success then goto Closed state

CS@AU Henrik Bærbak Christensen 10

Exercise: Why the need of the
half-open state?

Circuit Breaker

• Is a way to make ”graceful degradation”

– Degrade functionality when under strain

– Avoid DogPile, as it gives producer service time to recover

– Important to involve stakeholders

• ”What to do if in the open state?”

– What to do if we cannot verify credit card?

• Remember

– Use together with timeouts

– Expose, track and report state changes

• Log any ”popped fuses”!

CS@AU Henrik Bærbak Christensen 11

NetFlix

• NetFlix is a large micro service system, based upon

circuit breakers.

– Open sourced their circuit breaker implementation w. dashboard

CS@AU Henrik Bærbak Christensen 12

Resilience4J

• … is

– A lightweight, easy-to-use fault tolerance library inspired by

Hystrix, but designed for Java 8 and functional programming.

• You can pick and choose just the piece you want

– CircuitBreaker: Nygard’s pattern in it’s frequency form

– Bulkhead: Limit number of concurrent executions

– RateLimiter: Limit rate of requests (or queue them)

– Retry: Retry call N times with M mS delay between

– TimeLimiter: Nygard’s Fail Fast pattern

– Cache: You guessed it ☺

CS@AU Henrik Bærbak Christensen 13

Bulkheads

• Da: Skot

– Partitions that can be closed

preventing water from moving

from one section to the next

– Damage containment

• Bulkheads: Partitioning a system so failures in one part

does not lead to system failure

• Simplest (most common) form: Redundancy

– Have two or more servers handling the load

CS@AU Henrik Bærbak Christensen 14

Bulkheads

• Mission-critical form:

– Pool of servers/services reserved for critical use while the rest

are available for non-critical use

• Example

– Servers dedicated to airline check-in (critical)

– Others serve flight status checking (non-critical)

• Liability (see next slide)

– You now have two disjoint resource pools that are subject to

unbalanced capacities

– I.e. you need more reserved capacity

CS@AU Henrik Bærbak Christensen 15

Bulkheads

CS@AU Henrik Bærbak Christensen 16

Steady State

• Steady state: For every mechanism that accumulate

resources, some other mechanism must recycle that

resource.

• If not, accumulated resources

outgrow capacity

– Log files, DB rows, caching, …

• If capacity is exceeded - bad things

happen

CS@AU Henrik Bærbak Christensen 17

Examples

• MongoDB

– Allocated disk in max 2GB chunks

– If it cannot it simply stops processing write requests, only

processing read requests

• Will not reenable write requests until after restart

• (and data purge and compacting is a write request ☺)

• Docker container logs are written to storage

– So if you never look at them, they just grow

CS@AU Henrik Bærbak Christensen 18

Steady State

• Another potential definition

• Steady state: A system should be able to run indefinitely

without intervention

• Otherwise, you get used to fiddling

– Which leads to what Nygard terms ”oh-no-second”

• The split second when you realize you have hit the wrong key, shut

down the wrong server, deleted the wrong DB table…

• My personal fear was ”db.GFKRE003.drop()”

– 6TB of data from 4 years of data collection

CS@AU Henrik Bærbak Christensen 19

My own Fiddling trick

• A linux shell looks like … a linux shell

• Make staging machines and production machines look

different!

– Production machine always

have awful color choices!

– I do not mistake one for the

other!

• I hope…

CS@AU Henrik Bærbak Christensen 20

Steady State

• Data purging

– Remove old data from the DB

• Can be pretty tricky in RDB

– Referential integrity, orphaned rows, …

• And perhaps even more so in NoSQL

– Log files

• If not purged, you run out of disk space

– Java.io.IOException!

– Dump a stacktrace in the face of the user ☺

• Review the Log4J RollingFileAppender for non Docker use

• For Docker, you write to StdOut which is stored 

– Rewire to a logging system like ELK or Humio instead

» Which then run out of disk space ☺

CS@AU Henrik Bærbak Christensen 21

Fail Fast

• Fail fast: Check resource availability at the start of a

transaction, and fail immediately in case any is not

available.

• If not, you waste CPU and human time doing stuff that

will eventually have to be redone or undone

• Cook’s: mise en place

– Find all ingredients before starting

• Or the fish will burn while to try to find the chili paste…

CS@AU Henrik Bærbak Christensen 22

Fail Fast

• Part of fail fast is also to validate human entered values

as best possible before proceeding

– Typically values entered in web form or similar

• Avoid connecting the DB and do a query only to find that one of the

query parameters were null…

• Fail Fast is a way to combat slow response

• Example:

– CPF system will fail immediately if a key is not found in file.

CS@AU Henrik Bærbak Christensen 23

Let it Crash

• Let it Crash: Create system-level stability, by sacrificing

service-level(*) stability. The cleanest state your program

has, is right after startup.

– Nygard writes ‘component-level’, but guess that is synonym with

our ‘services’.

• Require

– Limited granularity: isolate the crash to the service

• Avoid cascading failures

– Fast replacement: Only ‘let it crash’ if restarts are quick

– Supervision: Don’t do local restarts, monitor on higher level

– Reintegration: Consider how ‘back to work’ is orchestrated

CS@AU Henrik Bærbak Christensen 24

Inspired by the Erlang programming language

Let it Crash

• We will return to HEALTHCHECK in Dockerfiles and

compose-files.

• Allows

– Granularity is the container

– Restart by the swarm (restart time is within the ~seconds)

– Simple supervision and reintegration is

built-in in the swarm’s stack

• Restart-policy

CS@AU Henrik Bærbak Christensen 25

Handshaking

• Handshaking: Allows a client to assess whether a server

has the capacity to answer a request, essentially

providing the server the ability to tell the client to ”back

off”

• Compare

– Ping-echo and Heartbeat tactics

• Actually not implemented in most modern protocols, like

HTTP, RMI, etc.

– You will probably have to implement it yourself

– Watch out for doubling the traffic: ‘can I do (1), then I do (2)’

• Any HTTP call is expensive…

CS@AU Henrik Bærbak Christensen 26

Test Harness

• Test Harness: A substitute for the remote end of an

integration point that produce out-of-spec failures

– Like

• Refuse connection, accept and then die, packet loss

• Slow responses, garbage responses, protocol errors

• Send one byte every 30 seconds (DOS attack), send Megabyte long

replies instead of Kilobyte long replies

• Send HTML instead of XML, refuse all authentication credentials, …

CS@AU Henrik Bærbak Christensen 27

Test Harness

• Da: Seletøj

• Integrations test: Testing that the parts are working

together to identify integration failures

– Obviously closely related to integration points and the large set of

stability antipatterns

• Nygard: No – it is not strong enough

– Integration tests test within-spec failure modes…

– Operations excel in out-of-spec failure modes !!!

• You do not get an error code from the remote server, it simply does

not reply, or provide slow response

CS@AU Henrik Bærbak Christensen 28

Decoupling Middleware

• Middleware decisions effect the implementation cost of

systems significantly

– Learn many architectural styles to ensure you pick the right one

CS@AU Henrik Bærbak Christensen 29

Shed Load

• The world can always create more load than you can

handle…

– There is no difference between ‘really, really slow’ and ‘down’.

• Shed load: Refuse new requests, if load gets too high.

– Similar to ‘fail fast’ but you do not fail on service-level but on

request-level

• Not ‘time out exception’ but ‘503 service unavailable’

– Guard calls to shed-loading services with circuit breakers or

timeouts or …

– Meaning of ‘Too high’?

• Monitor own SLA to determine the tripping point

CS@AU Henrik Bærbak Christensen 30

Shed = skille sig af med

Shed Load

• Back in the Queue Theory stuff…

– Systems with ‘randomly timed requests’ will follow this distribution

as the workload increase – response times increase

exponentially 

– Shed load when

you hit the upper

parts of the ‘knee’

CS@AU Henrik Bærbak Christensen 31

Create Back Pressure

• Every performance problem starts with a queue backing

up somewhere…

– Little’s law: L = lambda x R

• L = number of requests in queue (Think Føtex kasse queue)

• R = response time of request (Think ‘time until I leave’)

– R = W + S, wait time + service time (in line + getting served)

• lambda = arrival rate (arrival per sec, of custom.)

– So

• lambda is constant (influx of requests from the world)

• If response time gets longer… (S large (dankortterminal i stykker)’)

• … then more requests in queue

• … and then queue eats all memory => crash

CS@AU Henrik Bærbak Christensen 32

Create Back Pressure

• So

– … we do not want unbounded queues!

• Bounded queue, what to do with ‘out of space’?

– Pretend to accept new item, but actually drop it

– Accept new item, drop something else

– Refuse the item (= shed load)

– Block request (producer) until there is room in queue

• Dropping options

– In many real-time systems, only latest reading is interesting

• Aircraft flight control – who gives a damn about that angle the rudder

was in 30 seconds ago – more interesting what is now

CS@AU Henrik Bærbak Christensen 33

Create Back Pressure

• Block producer option

– Introduces ‘flow control’, applying ‘back pressure’ upstream

• (probably) propagates all the way back to the client, who will be

throttled down until queue releases…

• Create Back Pressure: Use finite queues and block

producers if queue overflows, to slow down instead of

crashing [Own definition]

– Alternative to ‘shed load’

– May lead to ‘blocked threads’ obviously

• Are we crashed or just extremely slow?

– Only use ‘within system boundaries’

• Use ‘shed load’ across system boundaries instead, like open internet

CS@AU Henrik Bærbak Christensen 34

Ex

• My Lyon airport load test

– MongoDB was slow,

so node memory

exhausted

• Solution

– I set the ‘prefetch’ to 1!

• Now Java connector

does not fetch next

until MongoDB has stored it (acknowledge message)

• Thus, the RabbitMQ itself acts as Queue, rather than the consuming

node’s heap acting as queue!

• Thus applying back pressure upstream until I hit a service that can

actually handle the pressure…

CS@AU Henrik Bærbak Christensen 35

Governor

• Steam engines: They can run so fast, they will break!

– Engineering device: Put a speed limit on: the ‘governor’

• Govenor: Stateful and time-aware control plane logic that

prevents a system from exceeding its safe limits. Actions

within safe limit should be fast, outside increasing

resistance must be applied

– Shutting down instances is unsafe, deleting data is unsafe …

– Antidote for the ‘force multiplier’ antipattern…

– Safe limits is kind of ‘U-shaped curve’

• Slow actions down if moving outside the

buttom of the U curve…

CS@AU Henrik Bærbak Christensen 36

Bounded Result Sets

• Nygard does not mention a pattern to combat unbounded

result sets

– Should be reasonably obvious…

• Bounded Result Sets: Return large results sets in chunks

that can be iterated. (Pagination)

– Not ”get bible”, but ”get bible, page 7564, page 7565, …”

– Mongo: use find().skip(n*page).limit(n)

CS@AU Henrik Bærbak Christensen 37

Retry

• Perhaps too obvious, but…

• Why does Nygard not mention ‘Retry’ as a pattern?

– Only indirectly in ‘time outs’ pattern

• Retry: If a request fail/time out, then retry the request

some time later a number of times before giving up

– Only do it, if it makes sense! And who does the retry?

– Fixed retry intervals

• Beware: May lead to dogpiles! We herd the calls together in lumps

– Gaussian retry intervals (?)

– ‘Exponential backoff’

• Retry after 1s, 2s, 4s, 8s, 16s, and then give up.

CS@AU Henrik Bærbak Christensen 38

Use Timeouts

• Example

– Exponential Back-off

• Wait 1 second, then 2, then 4, then 8, then 16…

CS@AU Henrik Bærbak Christensen 39

Who does Retry?

• Exercise:

– PlayerServant delegate to CaveStorage delegate to MongoDB

– MongoDB’s primary fails and throws exception…

• We will talk about passive replication technique shortly

– Exception caught in CaveStorage but

• Handle it locally in CaveStorage and do a retry?

• Rethrow as ‘ElectionException’ and handle in PlayerServant?

– Pro and Con of each solution?

CS@AU Henrik Bærbak Christensen 40

Experience F2020

• In ‘design for failure’ in F2020 I herded students into

trying to find graceful degradations

– Like retries

• General impression

– Seemed that the code became cumbersome and the results for

the users not quite intuitive

• “dig n My new room”

– “Could not dig your room, will retry later” ???

• So this year

– Fail fast and report it

– “Could not dig your room, you have to try again later”

CS@AU Henrik Bærbak Christensen 41

Summary

• Phew…

• Plus

– Shed load

– Back pressure

– Govenor

– Bounded Result

sets

– Retry

CS@AU Henrik Bærbak Christensen 42

