/v

AARHUS UNIVERSITET

Microservices and DevOps

Scalable Microservices
Stability Patterns

Henrik Baerbak Christensen

/v Anti --- Antipatterns

AARHUS UNIVERSITET

* Nygaard lists 14 antipatterns
— Users, blocked threads, slow response, chain reactions, etc.

e S0 - how to combat these???
— The Stability Patterns

— (and the ‘Remember this’ section in each antipattern chapter,
which mentions stability patterns that are not mentioned in this
chapter, hmmm)

/v

AARHUS UNIVERSITET

Note: Figure from
first edition!

Missing in 2nd Ed,
and a bit different
pattern set

But — nevertheless...

CS@AU

Summary

7 G SLA Inversion 2

counters

iti
4 Decoupling §
1 Middleware |

Attacks of
Mg SN -DNIE _ gt

counters
S Blocked Threads 2

{Testrimess }

leads ta N

e chain Reactions _2 finds problems in
resultsfram o~ £ Integration Peints

Unbounded
W, Result Sets 8

§ Handshaking

4 UseTimeouts E

Figure 3.1: INTERACTION OF PATTERNS AND ANTIPATTERNS

Henrik Baerbak Christensen

/v Is All This Clutter Necessary?

AARHUS UNIVERSITET
« As stated by Nygard:

* ... handling all the possible timeouts creates undue
complexity in your code. It certainly adds complexity.

* ... Your users may not thank you for it, because nobody
notices when a system doesn’t go down, but you will
sleep better at night.

/v

AARHUS UNIVERSITET

Timeouts

— Well placed time-outs provide fault isolation: your code does not
break due to a failure in another subsystem.

— Beware of vender supplied APls, sometimes they have forgotten
to add time out parameters ®

« Oritisinthe API, but not implemented ® ® ®

CS@AU Henrik Beerbak Christensen 5

eV Timeouts

AARHUS UNIVERSITET

— Apply to Integration Points, Blocked Threads, and Slow
Reponses

— Consider delayed retries

* Network issues take time to go away — do not retry again
immediately

— See ‘Retry’ pattern (that | introduce) later...

CS@AU Henrik Beerbak Christensen 6

/v Timeouts on Locks

AARHUS UNIVERSITET

e Java supports running multiple threads
— To avoid ‘weird stuff’ you need to guard ‘critical regions’
* i.e. the method that two or more threads may call at the same time
« Classic Java
— Synchronized methods cannot time out!

* Modern Java

— ReentrantLock myLock;
» Acquire not by ‘myLock.lock()’ but...
* By ‘myLock.tryLock(3, TimeUnit. SECONDS)’

/v Circuit Breaker

AARHUS UNIVERSITET
« The idea of a fuse: Burn before your house does!

* Circuit breaker: Da: Maksimalafbryder

— ... en automatisk afbryder, som bruges til udkobling af
overstrgmme.

— Bestar af bryderdel og relaedel.
Relaedelens funktion er at male strammen
og i tilfeelde af en overstram udkoble af-
bryderen

— HFl relee

CS@AU Henrik Baerbak Christensen 8

VeV Circuit Breaker

AARHUS UNIVERSITET

CS@AU Henrik Beerbak Christensen 9

/v

AARHUS UNIVERSITET
e Closed state:

— Execute operation as normal

* If operation fails (timeout) then
— Note it (increment failure count)
— If failure count > threshold then Open

 Open state:
— Falil fast, avoid the wait for timeout
— After a set time, switch to Half-open
- Half-open state:

— Execute operation again
« if fail then goto Open state immediately
* if success then goto Closed state

Circuit Breaker

{ on call / fail
{ on timeout / attempt reset

] Closed
1 on call / pass through
4 call succeeds / reset count
4 call fails / count failure g
4 threshold reached / trip breaker 3

trip
breaker

attempt
reset

4 If-
1 on call/pass through
| call succeeds/reset

o call fails/trip breaker

Exercise: Why the need of the

half-open state?

CS@AU Henrik Baerbak Christensen 10

/v Circuit Breaker

AARHUS UNIVERSITET

« |s a way to make "graceful degradation”
— Degrade functionality when under strain
— Avoid DogPile, as it gives producer service time to recover

— Important to involve stakeholders

* "What to do if in the open state?”
— What to do if we cannot verify credit card?

« Remember
— Use together with timeouts

— EXxpose, track and report state changes
» Log any "popped fuses”!

/v

AARHUS UNIVERSITET

NetFlix

« NetFlix is a large micro service system, based upon
circuit breakers.

W,

— Open sourced their circuit breaker implementation w. dashboard
%
®- HYSTRIX

\\\\\nmm///

\\\\\\\uu

) \\\\§ DEFEND YOUR APP IdentitycookieAuth .
85,725 0%

0| 52

0
\/\/\/\W\M Host: 35.0/s

cluster: 8,579.0/s
Circuit Closed
243 90th

Oms 99th
Tms 99.5th

Hosts

Median
CS@AU

ims
Mean

39ms

54ms
Henrik Baerbak Christensen

12

eV Resilience4]

AARHUS UNIVERSITET
e ... IS

— A lightweight, easy-to-use fault tolerance library inspired by
Hystrix, but designed for Java 8 and functional programming.

* You can pick and choose just the piece you want
— CircuitBreaker: Nygard’s pattern in it's frequency form

— Bulkhead: Limit number of concurrent executions

— RateLimiter: Limit rate of requests (or queue them)

— Retry: Retry call N times with M mS delay between
— TimeLimiter: Nygard’s Fail Fast pattern

— Cache: You guessed it ©

/v Bulkheads

AARHUS UNIVERSITET

Mamparos
transversales

 Da: Skot

— Partitions that can be closed
preventing water from moving
from one section to the next

— Damage containment

Mamparos
longitudinales

« Simplest (most common) form: Redundancy
— Have two or more servers handling the load

Henrik Baerbak Christensen 14

CS@AU

/v Bulkheads

AARHUS UNIVERSITET

 Example
— Servers dedicated to airline check-in (critical)
— Others serve flight status checking (non-critical)

 Liability (see next slide)

— You now have two disjoint resource pools that are subject to
unbalanced capacities

— l.e. you need more reserved capacity

CS@AU Henrik Beerbak Christensen 15

/v

AARHUS UNIVERSITET

CS@AU

Figure 5.2: HIDDEN LINKAGES

Figure 5.3: PARTITIONED SYSTEM

Henrik Baerbak Christensen

Bulkheads

16

/v Steady State

AARHUS UNIVERSITET

« [f not, accumulated resources
outgrow capacity .
— Log files, DB rows, caching, ...

 |If capacity is exceeded - bad things
happen

CS@AU Henrik Beerbak Christensen 17

/v Examples

AARHUS UNIVERSITET

* MongoDB
— Allocated disk in max 2GB chunks

— If it cannot it simply stops processing write requests, only
processing read requests

« Will not reenable write requests until after restart
« (and data purge and compacting is a write request ©)

« Docker container logs are written to storage
— So if you never look at them, they just grow

/v Steady State

AARHUS UNIVERSITET
« Another potential definition

« Otherwise, you get used to fiddling

— Which leads to what Nygard terms “oh-no-second”

« The split second when you realize you have hit the wrong key, shut
down the wrong server, deleted the wrong DB table...

* My personal fear was "db.GFKREO003.drop()”
— 6TB of data from 4 years of data collection

CS@AU Henrik Beerbak Christensen 19

My own Fiddling trick

AARHUS UNIVERSITET
e Alinux shell looks like ... a linux shell
« Make staging machines and production machines look

.
d I ff e r e n t I 2 eco-admin@ecosensemaq1: ~/Karibu-EcoSense-Production " T alal=
- .karibu.deserializer.LIVRE0O0185978e8£0) -

2015-08-13 22:15:38,488 INFO [St D: iverThread iverEndpoint] - Caching the deserializer (dk.au.cs
.karibu.deserializer.GFKSC002@7615078d)
- - 12015-08-17 17:50:31,513 INFO [St 3 iverThread iverEndpoint] - Caching the deserializer (dk.au.cs
.karibu.deserializer.SAMREO0187a0a639f)
.karibu.deserializer.DIUREQ02@e854e0)
12015-08-19 10:45:21,549 ERROR [Sts D

—ReceiverThread: iverEndpoint] - Mongo exception during storage on
E: Tl rk: Write cperation to server .cs.au.dk/10.26.0.48:

: 27017 failed on database ecosense
V W r I at com.mongodb. DSICEConnector . say (DBTCEConnector. Java:153)
. at com.mongodb.DBTCEConnector. say (DBTCEConnector. java:115)
at com.mongodb.DBApilayer§MyCollection.insert (DBApilayer.java:248)
at com.mongodb.DBApilayer§MyCollection.insert (DBApilayer.java:204)
at com.mongodb.DBCollection.insert (DBCollection.java:76)
at com.mongodb.DBCollection.insert (DBCollection.java:60)
at com.mongodb.DBCollection.insert (DBCollection.java:105)
at dk.au.cs.karibu.backend.mongo.MongoDBStorage .process (MongoDBStorage . java:125)
at dk.au.cs.karibu.backend.standard.StandardSer ler.receive (StandardSer ler.java:187)
at dk.au.cs.karibu.backend.MessageReceiverEndpoint.startReceiving (MessageReceiverEndpoint.ava:133)
at dk.au.cs.karibu.backend.MessageReceiverEndpoint.run (MessageReceiverEndpoint.java:191)
at java.lang.Thread.run(Thread.java:T45)
Caused by: java.io.EOFException
I at org.bson.ic.Bits.readFully(Bits.java:48)
at org.bson.ic.Bits.readFully(Bits.java:33)
at org.bson.ic.Bits.readFully(Bits.java:2g)
at com.mongodo. .<init>(.java:40)
[l at com.mongodb.DBPort.go (DBPort. java:142)
at com.mongodb.DBPort.go (DBPort. java:106)
at com.mongodb.DBEort. findOne (DBPort. java:162)
at com.mongodb.DBPort . runCommand (DBPort .java:170)
at com.mongodb.DBTCEConnector. _checkWriteError (DBTCEConnector. java:100)
at com.mongodb.DBTCEConnector . say (DBTCEConnector. java:142)

- ... 11 more
O no I I I IS a e OI Ie Or e 2015-08-19 10:45:21,549 INFO [St D iverThread: iverEndpoint] - Request handler flagged message as

'not processed', will sleep (30000) ms.

lproducer code: KIEREQO1 / com.mongodb,Ms

2015-08-19 10:45:51,549 INFO [St D iverThread: iverEndpoint] - Will ask CONsSumer to recover.
[2015-08-19 10:45:51,551 INFO [St D iverThread: iverEndpoint] - Will continue receiving now.
[§}2015-08-192 10:45:51,571 INFO [St D: —RecelverThread:: iverEndpoint] - MQ signal, will packoff [

M lor 500ms and retry (Retzy #1) £
[2015-08-19 10:45:52,071 INFO [St D: —ReceiverThread:RabbitMQPollingCe r] - Ch. 1 ng: Exch
| :standardrapeicExch Configuration (username ! 3T serverAddr: List @ [1l.cs.au.dk: 5672, ecosenzengld
2.cs.au.dk:5672], sslConnection : false, : rable : true, Type : topic)
Queue: StandardSt: o Configuration (: sto q , gueueDurable : true, gueueExclusive : false, gueuelu

[] O e ‘toDelete : false, routingKey : *.%.store)
LU eco-admi 1:~/Karibu-E —Production§ B

CS@AU Henrik Baerbak Christensen 20

/v Steady State

AARHUS UNIVERSITET
« Data purging
— Remove old data from the DB
« Can be pretty tricky in RDB
— Referential integrity, orphaned rows, ...
* And perhaps even more so in NoSQL
— Log files
* If not purged, you run out of disk space

— Java.io.lOException!
— Dump a stacktrace in the face of the user ©

* Review the Log4J RollingFileAppender for non Docker use
* For Docker, you write to StdOut which is stored ®

— Rewire to a logging system like ELK or Humio instead
» Which then run out of disk space ©

eV Fail Fast

AARHUS UNIVERSITET

 If not, you waste CPU and human time doing stuff that
will eventually have to be redone or undone

« Cook’s: mise en place

— Find all ingredients before starting
 Or the fish will burn while to try to find the chili paste...

CS@AU Henrik Beerbak Christensen 22

VeV Fail Fast

AARHUS UNIVERSITET

o Part of fall fast is also to validate human entered values
as best possible before proceeding

— Typically values entered in web form or similar

» Avoid connecting the DB and do a query only to find that one of the
query parameters were null...

« Fall Fast is a way to combat slow response

 Example:
— CPF system will fail immediately if a key is not found in file.

eV Let it Crash

AARHUS UNIVERSITET

— Nygard writes ‘component-level’, but guess that is synonym with
our ‘services’. i
|
* Require
— Limited granularity: isolate the crash to the service
» Avoid cascading failures
— Fast replacement: Only ‘let it crash’ if restarts are quick
— Supervision: Don’t do local restarts, monitor on higher level
— Reintegration: Consider how ‘back to work’ is orchestrated

CS@AU Henrik Beerbak Christensen 24

eV Let it Crash

AARHUS UNIVERSITET

« We will return to HEALTHCHECK In Dockerfiles and
compose-files.

« Allows
— Granularity is the container
— Restart by the swarm (restart time is within the ~seconds)
— Simple supervision and reintegration is e 2

built-in in the swarm’s stack redis:
. image: redis:alpine
* Restart-policy deploy:
restart_policy:
condition: on-failure

delay: 5s
max_attempts: 3
window: 128s

CS@AU Henrik Baerbak Christensen 25

/v Handshaking

AARHUS UNIVERSITET

« Compare
— Ping-echo and Heartbeat tactics

« Actually not implemented in most modern protocols, like
HTTP, RMI, etc.
— You will probably have to implement it yourself

— Watch out for doubling the traffic: ‘can | do (1), then | do (2)
 Any HTTP call is expensive...

CS@AU Henrik Beerbak Christensen 26

/v

Test Harness

AARHUS UNIVERSITET

— Like

CS@AU

Refuse connection, accept and then die, packet loss
Slow responses, garbage responses, protocol errors

Send one byte every 30 seconds (DOS attack), send Megabyte long

replies instead of Kilobyte long replies

Send HTML instead of XML, refuse all authentication credentials, ...

Henrik Baerbak Christensen

27

eV Test Harness

AARHUS UNIVERSITET
« Da: Seletgj

 Integrations test: Testing that the parts are working
together to identify integration failures

— Obviously closely related to integration points and the large set of
stability antipatterns

* Nygard: No — it is not strong enough
— Integration tests test within-spec failure modes...

— Operations excel in out-of-spec failure modes !!!

* You do not get an error code from the remote server, it simply does
not reply, or provide slow response

/v

AARHUS UNIVERSITET

Same Time
Same Host

Same Process

Decoupling Middleware

Same Time
Different Host
Different Process

—_——————————

In-Process
Method Calls

& Functions
Java Calls
Dynamic Libs

interprocess Remote Meassage Tuple Spaces
Communication Procedure Calls Oriented P!
Middleware
Shared Memory DCE RPC MO JavaSpaces
Pipes DZOM Pub-Sulb TSpaces
Semaphores RAMI SMTP GigaSpaces
Windows Events XML-APC SMS

HTTP

Figure 5.4: COUPLING SPECTRUM OF MIDDLEWARE
T o e e R T B S T T L e B e T S R R R s

CS@AU

Henrik Baerbak Christensen 29

VeV Shed Load

AARHUS UNIVERSITET

 The world can always create more load than you can
handle...

— There is no difference between ‘really, really slow’ and ‘down’.

. Shed load: Refus s, if load " |

— Similar to ‘fail fast’ but you do not fail on service-level but on
request-level

* Not ‘time out exception’ but ‘503 service unavailable’

— Guard calls to shed-loading services with circuit breakers or
timeouts or ...

— Meaning of “Too high’?
« Monitor own SLA to determine the tripping point

Shed = skille sig af med

CS@AU Henrik Baerbak Christensen 30

VeV Shed Load

AARHUS UNIVERSITET

« Back in the Queue Theory stuft...

— Systems with ‘randomly timed requests’ will follow this distribution
as the workload increase — response times increase
exponentially ®

0.7
Shed load wh 06
— ed 10ad when
. E 05 Response time
you h|t the upper = Shorter service time ‘knee’ at high —e—1s=0.03
. , g 0.4 flattens the curve utilisations — = ts=0.02
parts of the ‘knee 2 0.3 16=0.01
2 02 s ts=0.005
0.1
0.0 : ¥
X X2 X TR R R R R
& & © © © © © © ©o o o
- &8 o 3 O o® o ~ ®© & o
Utilization

CS@AU Henrik Baerbak Christensen 31

VeV Create Back Pressure

AARHUS UNIVERSITET

« Every performance problem starts with a queue backing
up somewhere...
— Little’s law: L = lambda x R

« L =number of requests in queue (Think Fgtex kasse queue)
* R =response time of request (Think ‘time until | leave’)
— R=W + S, wait time + service time (in line + getting served)
» lambda = arrival rate (arrival per sec, of custom.)
- So
« lambda is constant (influx of requests from the world)

 If response time gets longer... (S large (dankortterminal i stykker)’)
... then more requests in queue
* ... and then queue eats all memory => crash

VeV Create Back Pressure

AARHUS UNIVERSITET

e SO
— ... we do not want unbounded queues!

 Bounded queue, what to do with ‘out of space’?
— Pretend to accept new item, but actually drop it
— Accept new item, drop something else
— Refuse the item (= shed load)
— Block request (producer) until there is room in queue

« Dropping options
— In many real-time systems, only latest reading is interesting

« Aircraft flight control — who gives a damn about that angle the rudder
was in 30 seconds ago — more interesting what is now

VeV Create Back Pressure

AARHUS UNIVERSITET

* Block producer option

— Introduces ‘flow control’, applying ‘back pressure’ upstream

» (probably) propagates all the way back to the client, who will be
throttled down until queue releases...

— Alternative to ‘shed load’
— May lead to ‘blocked threads’ obviously

» Are we crashed or just extremely slow?
— [Only use ‘within system boundaries’

» Use ‘shed load’ across system boundaries instead, like open internet
CS@AU Henrik Beerbak Christensen 34

AARHUS UNIVERSITET
My Lyon airport load test
— MongoDB was slow, = M%Bwu.g
SO node memory ¢ Eﬁg 5 3552.1632::9.123:4672 (pid 2679)
exhausted “ .
* Solution Lo I
— | set the ‘prefetch’ to 1! P =
« Now Java connector |
d oes n Ot f et Ch n eXt | [— i T Ostetdues Muesnsesdens

until MongoDB has stored it (acknowledge message)

* Thus, the RabbitMQ itself acts as Queue, rather than the consuming
node’s heap acting as queue!

« Thus applying back pressure upstream until | hit a service that can
actually handle the pressure...

CS@AU Henrik Baerbak Christensen 35

/v Governor

AARHUS UNIVERSITET

« Steam engines: They can run so fast, they will break!
— Engineering device: Put a speed limit on: the ‘governor’

— Shutting down instances is unsafe, deleting data is unsafe ...
— Antidote for the ‘force multiplier’ antipattern...

— Safe limits is kind of ‘U-shaped curve’

« Slow actions down if moving outside the
buttom of the U curve...

©

CS@AU Henrik Beerbak Christensen

eV Bounded Result Sets

AARHUS UNIVERSITET

* Nygard does not mention a pattern to combat unbounded
result sets
— Should be reasonably obvious...

— Not "get bible”, but "get bible, page 7564, page 7565, ...”

— Mongo: use find().skip(n*page).limit(n)

CS@AU Henrik Beerbak Christensen 37

Y Retry

AARHUS UNIVERSITET
« Perhaps too obvious, but...

« Why does Nygard not mention ‘Retry’ as a pattern?
— Only indirectly in ‘time outs’ pattern

* Retry: If a request fail/time out, then retry the request
some time later a number of times before giving up
— Only do it, if it makes sense! And who does the retry?
— Fixed retry intervals
« Beware: May lead to dogpiles! We herd the calls together in lumps
— Gaussian retry intervals (?)
— ‘Exponential backoff’
* Retry after 1s, 2s, 4s, 8s, 16s, and then give up.

S Use Timeouts

AARHUS UNIVERSITET

 Example

— Exponential Back-off
 Wait 1 second, then 2, then 4, then 8, then 16...

I } catch (ShutdownSignalException sse) {
'/ Happens when rabbiitmg shut downs more or less gracefully
incrementRetryCountAndWaitBeforeProceeding ("M} shutdown signal™);
} catch (ConnectException connectException) {
// Happens in case we canncot connect to ANY of the MQs
/4 The origin is the cpenChannelAndSetRouting method.
incrementRetryCountAndWaitBeforeProceeding("MQ connecticon exception™);
} catch (Exception otherExc) {
retryCount++;
String theTrace = ExceptionUtils.getStackTroce(otherExc);
leg.error(theTrace);

}

by
¥

private woid incrementRetryCountAndWaitBeforeProceeding(String exceptionDescription) {
retryCount++;
long delay = this.calculateBackoffDelayInMs();
log.infol exceptionDescription + ", will backoff for "+
delay+"ms and retry (Retry #"+retryCount+™)™);
try {
S wait a bit to if things get better
Thread.sleep(calculateBackoffDelayInMs());
} catch ({ InterruptedException interExc) {
String theTrace = ExceptionUtils.getStackTrace(interExc);
leg.error(theTrace);

CS@AU L 39

/v Who does Retry?

AARHUS UNIVERSITET

« EXercise:
— PlayerServant delegate to CaveStorage delegate to MongoDB

— MongoDB'’s primary fails and throws exception...
« We will talk about passive replication technique shortly

— Exception caught in CaveStorage but
« Handle it locally in CaveStorage and do a retry?

* Rethrow as ‘ElectionException’ and handle in PlayerServant?

— Pro and Con of each solution?

/v Experience F2020

AARHUS UNIVERSITET

 In ‘design for failure’ in F2020 | herded students into
trying to find graceful degradations
— Like retries

« (General impression

— Seemed that the code became cumbersome and the results for
the users not quite intuitive

* “dig n My new room”
— “Could not dig your room, will retry later” 2?7

e SO0 this year

— Fall fast and report it
— “Could not dig your room, you have to try again later”

/- Summary
AARHUS UNIVERSITET
=

raduces impact

coumtars

 exacerhales

Counters
S locked Threads 2

* Plus
— Shed load
— Back pressure
— Govenor

i Bulkheads }

laads to

4 hln Reactions £ mutual

resulls from aggravation
counters wialatin

i - g
Steady State |

" avolds

finds problems in

Slow Responges .«

¥ .-Unbalanced
E Capacities

— Bounded Result
sets

— Retry

can avoid

Unbounded
A, _Result Seis_d'

Use Timeouts 3

Figure 3.1: INTERACTION OF PATTERNS AND ANTIPATTERNS
CS@AU

